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Abstract: This study presents an innovative, automated deep learning-based technique for near
real-time satellite monitoring of river ice conditions in northern watersheds of the United States
and Canada. The method leverages high-resolution imagery from the VIIRS bands onboard the
NOAA-20 and NPP satellites and employs the U-Net deep learning algorithm for the semantic
segmentation of images under varying cloud and land surface conditions. The system autonomously
generates detailed maps delineating classes such as water, land, vegetation, snow, river ice, cloud, and
cloud shadow. The verification of system outputs was performed quantitatively by comparing with
existing ice extent maps in the northeastern US and New Brunswick, Canada, yielding a Probability
of Detection of 0.77 and a False Alarm rate of 0.12, suggesting commendable accuracy. Qualitative
assessments were also conducted, corroborating the reliability of the system and underscoring its
utility in monitoring hydraulic and hydrological processes across northern watersheds. The system’s
proficiency in accurately capturing the phenology of river ice, particularly during onset and breakup
times, testifies to its potential as a valuable tool in the realm of river ice monitoring.

Keywords: VIIRS; river ice; natural hazards; ice jams; flood; freeze up; breakup; U-Net

1. Introduction

The complex significance of river ice, with its varied roles in hydrological processes and
its impact on water resources management operations, holds an acute level of importance.
Its influence extends over a wide range of areas, including flood dynamics, water resources
management, water supply, and hydropower generation, underscoring its essentiality
in maintaining and managing our water-dependent ecosystems and infrastructures [1,2].
River ice phenomena, which encompass ice formation, growth, and subsequent breakup can
instigate flooding and inflict considerable damage to infrastructure, notably at the higher
latitudes of the Northern Hemisphere. Here, river ice influences the hydrological patterns
of nearly 60% of rivers for a significant portion of the winter [1]. In higher latitudes,
it asserts substantial control over a majority of fluvial processes [3]. The interruptions
caused by these ice-related events can lead to disruptions in water supply and hydropower
generation, triggering substantial socioeconomic ramifications [4].

Despite the indispensable role river ice plays in the hydrological cycle and water
resources management, its systematic monitoring poses formidable challenges. While in
situ observations hold substantial worth, their utility is curtailed by issues of accessibility,
particularly during severe winter conditions, rendering them inadequate for comprehensive
and continuous data acquisition [5]. There exists a notable deficiency in the systematic
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mapping of river ice at a continental scale, primarily attributed to logistical constraints and
safety concerns inherent in ground-based measurements. In the United States, river ice data
can be gleaned from reports published by the US Geological Survey (USGS) Water Resources
Division and from USGS stream-gauging station data. Additionally, river freeze up and
breakup and ice jam information is cataloged by the US Army Cold Regions Research and
Engineering Laboratory (CRREL) and is available in the Ice Jam Database [6]. However,
the incorporation of satellite data appears as a promising adjunct to in situ data and aerial
surveys, potentially enhancing the scope and reliability of river ice monitoring [3].

For instance, in the realm of river ice research, pioneering studies have utilized remote
sensing data for river ice mapping. Chaouch et al. (2014) developed an automated algorithm
using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, offering reliable
information for accurate hydrological forecasts on a regional scale [5]. Yang et al. (2020) em-
ployed a trove of clear-sky Landsat images to evidence the global decline in river ice extent,
providing a validated model for future predictions [3]. Further, Altena and Kääb (2021)
showcased the feasibility of a multi-satellite monitoring system, demonstrating the po-
tential of leveraging low- and medium-resolution satellite sensors to monitor river ice
movement [7]. These seminal works provide a robust foundation for further innovation in
river ice monitoring.

Satellite-based remote sensing has emerged with the advent of several new and
enhanced sensors in recent years as a robust avenue to circumvent these limitations. Specif-
ically, the Visible Infrared Imaging Radiometer Suite (VIIRS), embarked on the Suomi-NPP
(SNPP), NOAA-20, and NOAA-21 satellites, offers repetitive and wide-ranging coverage,
thereby establishing itself as an exceptional candidate for river ice condition monitoring.
Nevertheless, most extant studies employing VIIRS imagery for hydrological applications
have predominantly focused on flood mapping [8–10] and snow cover detection [11]. De-
spite the incorporation of numerical models and machine learning methodologies, most
of these mapping algorithms continue to be predominantly threshold-based, largely de-
pendent on terrestrial observations. This factor considerably constrains their adaptability
and scalability, particularly in regions where data is scarce. Furthermore, to the authors’
knowledge, the developed system is unique in its capability to automatically detect and
map river ice on a continental scale, estimate its concentration and thickness regularly, and
allow the user to infer its motion leveraging the coincident multi-satellite observations.

This study introduces a novel satellite-based system for river ice mapping using
VIIRS imagery that addresses the existing operational gap and provides forecasters and
decision makers with daily updates on river ice conditions on a continental scale, covering
northern watersheds in the US and the entire Canadian territory. The system leverages the
capabilities of deep learning techniques, which have demonstrated extraordinary efficacy in
the realm of remote sensing. The use of deep learning-based techniques with their advanced
capabilities for the segmentation of VIIRS images is expected to address the detection and
mapping of river ice as well as the generation of additional classes such as snow, water,
and cloud, which are also useful for the forecasters to conduct a holistic analysis of the
hydrological processes. More precisely, the presented study that leverages the utilization of
deep learning not only aspires to amplify the accuracy of river ice detection but also assists
in the extraction of more intricate data, an endeavor that conventional methodologies
generally struggle to achieve [12]. Another novelty that the proposed system holds is the
fact that all the generated images are disseminated in a Google Earth Engine (GEE) interface
that allows the users to display, compare, and query the different products.

2. Materials and Methods
2.1. Study Domain

The geographic domain covered by the proposed system lies between 30 degrees north
and 80 degrees north, which stretches between the southern US and the northern limit of
Alaska. In terms of longitude, the system’s domain stretches between −180 degrees and
−60 degrees, which encompasses all rivers and waterbodies from western Alaska to the
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east coast of the US and Canada (Figure 1d). Given the large extent of the covered domain,
the use of moderate spatial resolution satellite images is more straightforward from a
feasibility perspective. The use of high-resolution imagery has certainly more potential in
terms of the level of information to generate. However, the existing sensors to date lack the
exhaustive spatial coverage to encompass a continental domain such as the ones covered
by VIIRS images.
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Figure 1. Geographical location of the study area encompassing regions affected by river ice. (a) Il-
lustrates the extent of the domain over the Alaska-Pacific RFC. (b) Depicts the extent of the domain
across the six northern RFCs impacted by river ice within the Continental United States (CONUS).
(c) Represents the frequency of ice jams recorded over the seven RFSs since early 1900 with the
RFC experiencing the highest number of ice jams highlighted in red [6]. (d) An image of a Google
Earth Engine App demonstrating the application of VIIRS river ice product in near real-time mode
for continental-scale river ice mapping and the geographic extent of the coverage [13]. (e) A photo
capturing a severe ice flooding at Galena, Alaska, in May 2013.

The geographic extent of the system covers all seven northern River Forecast Cen-
ters (RFCs), namely, Northwest RFC (NWRFC), Ohio RFC (OHRFC), Northcentral RFC
(NCRFC), Mid-Atlantic RFC (MARFC), Missouri Basin RFC (MBRFC), Alaska-Pacific RFC
(APRFC), and northeast RFC (NERFC) (Figure 1a,b). All the covered RFCs are under the
National Weather Service. Their domains are also part of the National Water Model (NWM),
a US-wide hydrological model operated by the NOAA National Water Center (NWC). It is
worth noting that the Colorado Basin RFC might be partially impacted by river ice during
winter, but we do not have a record of active ice breakup seasons in CBRFC.

The seven northern RFCs are impacted by river ice every year. However, the frequency
and the risk of ice-induced flooding vary among these RFCs. According to CRREL, the
Missouri Basin and Alaska-Pacific RFCs have the highest number of ice jams on record
due to the significant extent of the territory and the fact that all rivers in the state freeze
in winter and are impacted subsequently by the breakup season (Figure 1c). In 2012, for
instance, the village of Galena along the Yukon River was impacted by a record ice jam,
which caused significant flooding that led to the evacuation of the village (Figure 1e).

Numerous other instances highlight the detrimental effects of ice jams, further em-
phasizing the urgency of this issue. For example, NOAA (https://www.nesdis.noaa.gov/
river-ice-flooding-initiative accessed on 19 August 2023) and CRREL [6] have documented
several significant ice jams that have induced substantial disruptions and damage. Despite
the insights these records provide, it is important to consider the inherent limitations of
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these sources of data. Notably, the CRREL database operates on a point-based system,
which does not incorporate remote sensing data into the published records [6]. This con-
straint essentially narrows the scope of the information and potentially overlooks broader
trends in ice jam occurrences and their impacts. Cases reported by CRREL underscore the
adverse impacts that ice jams can have on communities and the environment and the need
for more comprehensive monitoring systems. While CRREL’s database provides valuable
information about these instances, the integration of remote sensing data could further
enhance the depth and reach of this information, allowing for more informed, accurate,
and timely responses to such environmental crises.

2.2. Datasets
2.2.1. VIIRS Images

The Joint Polar Satellite System (JPSS) provides essential observations for severe
weather prediction and environmental monitoring, facilitated by three currently operational
satellites: the Suomi National Polar-Orbiting Partnership (S-NPP, launched October 2011),
NOAA-20 (JPSS-1, launched November 2017), and NOAA-21 (launched November 2022).
These satellites, orbiting at an altitude of 824 km, offer global coverage and cross the
equator at 1:30 am and 1:30 pm local time, effectively making two observations per day at
lower latitudes and more frequent observations towards the poles. Each satellite completes
approximately 14 orbits per day, taking around 100 min to complete a single orbit [14–16].

The Visible Infrared Imaging Radiometer Suite (VIIRS) is the next-generation scanning
radiometer integrated into the JPSS, responsible for measuring the properties of the Earth’s
atmosphere, ocean, and land. It builds upon the legacy of the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Terra and Aqua satellites and the Advanced Very
High-Resolution Radiometer (AVHRR) on the NOAA and Metop series of satellites [14–16].

VIIRS operates with 22 spectral bands that range from visible to longwave infrared.
These include 16 moderate resolution bands (M-bands) that provide a resolution of 750 m
at the nadir, five imaging resolution bands (I-bands) offering 375 m resolution at the nadir,
and one day-night band (DNB) ensuring 750 m resolution across the scan. It is noteworthy
that the VIIRS’s swath width is broader (~3040 km) compared to that of MODIS (~2330 km),
providing daily full global coverage in both day and night sides of the Earth, with minimal
degradation in resolution at swath edges. Notably, VIIRS ensures no coverage gaps in the
tropics. The distribution of VIIRS data takes the form of granules, each comprising 48 scans
that encompass approximately 85 s of data, covering roughly 570 km in the along-track
direction [14–16].

This study employs I-band images derived from the NOAA-20 and S-NPP satellites’
ascending daytime passes. Specifically, the following VIIRS I-bands are used: I01, I02,
I03, and I05. In addition, the zenith, the satellite, and the solar angle layers are used. The
angles are important to define the geometry of the observation and capture its spatial and
temporal context. This is particularly important in the case of such a large domain.

This study uses VIIRS images from two platforms, namely NPP and NOAA-20. The
identical sensors flown on these platforms have similar orbits, but they are 50 min apart.
The acquisition of images from similar sensors with a reasonable lag is useful to generate
composites that should minimize the cloud coverage, assuming that surface conditions do
not change significantly within the 50 min separating the subsequent acquisitions.

2.2.2. Auxiliary Datasets

Other ancillary datasets are used in this study to support the use of deep learning
and enhance the segmentation with additional inputs and explanatory variables. Land
cover is a key input that should impact the segmentation of VIIRS images. The algorithm
will use the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Cover Type (MCD12Q1) product as one of the input variables for river
ice remote sensing [17]. In addition, the climatology of Land Surface Temperature (LST)
was proven to be useful in the identification of clouds via the calculation of the vertical
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temperature gradient between LST climatology, originally calculated under cloud-free
conditions and the I05 thermal band of VIIRS. A narrow gap between the climatology of
LST and I05 indicates that the scene is cloud free, whereas the presence of clouds may lead
to a significant difference that may vary depending on the type of clouds, their thickness,
and their altitude. The LST climatology was obtained from the NASA MODIS product
MOD11C3 Version 6, which provides monthly Land Surface Temperature and Emissivity
(LST&E) [18]. Another dataset that was necessary to conduct the segmentation of VIIRS
images and delineate waterbodies was the high-resolution land-water mask, which was
generated using Landsat images collected over around 20 years, a period that is long
enough to capture extreme flooding conditions to ensure that floodplains are included in
the water mask [19].

2.2.3. Validation Datasets

The evaluation of the system performance was conducted using qualitative and quanti-
tative methods. The qualitative methods make use of collected on-the-ground observations
from cameras deployed and maintained by USGS at several stations around the country.
Other photographs are also obtained from surveys conducted by NOAA NWS, whether
during field surveys along the rivers that are ice-prone or airborne surveys such as the
RiverWatch program that takes place in Alaska to monitor river ice conditions across the
state. In addition, the qualitative evaluation relies on the comparison with other collocated
satellite observations from high-resolution sensors such as Sentinel 1 and 2 or moderate-
resolution sensors such as Sentinel 3. Moreover, when reporting streamflow observations
at river stations, USGS adds a flag that is indicative of ice presence. USGS usually filter
out streamflow observations that are collected in the presence of river ice. The flag is
often added to a posteriori during the quality control of the collected data. It assumed
that the absence of streamflow observation and the addition of the quality flag is useful
in the context of river ice as the flag confirms the presence of ice at the location of the
streamflow station.

In the absence of operational and official river ice products, the quantitative evaluation
of the proposed system is challenging. Nonetheless, over the years, the New Brunswick
Department of Environment and the local Government in Canada generated river ice
charts showing the extent of ice in the main rivers in the province and those in shared
watersheds with the state of Maine in the US. This is a unique product that uses the River
Ice Observation and Reporting System tool internally to help inform the flood forecasting
process and emergency response coordination. Hence, the charts issued by the authorities
in New Brunswick, Canada, were used for the quantitative assessment of the proposed
VIIRS product.

It is worth noting that despite the fact that the system generates various classes that
cover vegetation, snow, water, ice, and clouds, the focus of the verification here is on the
performance of mapping river ice. Although the variability of the extent of the other classes
such as snow and water are indicative of ice dynamics as their change could often be a
precursor for ice breakup, their quantitative verification is beyond the scope of the paper.

2.3. Use of U-Net for VIIRS Images Classification

The employed methodology leverages the sophisticated U-Net network architecture.
This deep learning framework is deployed to seamlessly integrate all the VIIRS channels
with supplementary surface layers, thereby facilitating an efficient image segmentation
process. This strategy paves the way for generating several distinct classes, which encom-
pass clouds, river ice, snow, water, bare land, and vegetation. This diversified classification
capability stands as a testament to the efficacy and versatility of the U-Net network and its
applicability in the context of VIIRS data. The overall flow chart of the system is presented
in Figure 2.

Cloud detection is one of the challenging tasks when using optical images for the
monitoring of surface conditions. Cloud spectral signature can exhibit a significant vari-
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ability depending on cloud type, height, thickness, latitude, and observation geometry, i.e.,
solar and satellite angles. Here, we propose a two-stage approach that consists of using
the first cloud-specific net to map clouds. Then, the cloud free part of the satellite image is
segmented separately with the second net that was trained using scenes with dominant
cloud free conditions.
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Figure 2. Flowchart illustrating the methodology with (A) data preprocessing, (B) segmentation
using U-Net (adopted from [20]), and (C) product dissemination [13].

The first step addresses cloud detection using a trained net over scenes with prevailing
cloudy conditions. The scenes used in the training that are specific to cloudy conditions
were carefully examined visually to select those with various cloud types. In addition,
cloud-free scenes, which were identified after careful visual examination were used to train
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another net that is specific for clear conditions. The selected scenes that were used for the
training of the UNet were labeled, and the following classes were identified: water, ice,
snow, bare land, vegetation, and clouds. The defined classes during the training step will
be generated using the trained UNet in the validation and testing steps.

Cloud detection using the trained net leverages the sensitivity of the vertical gradient
of temperature to cloud presence. The vertical gradient of temperature corresponds to the
difference between LST climatology and the observation in the thermal I5 channel. This
gradient that is calculated for each pixel is one of the main input variables that guides the
detection of clouds. The training of the first net included cloud and cloud shadow pixels
despite their distinct spectral signatures. The likelihood of finding cloud shadows is higher
when using cloudy scenes. Therefore, the cloud shadow class was generated as an output
of the first clustering along with the cloud class. So, the output of the first net is two classes,
namely, cloud and cloud shadow.

The second net, which is focused on cloud-free conditions is used to generate the
following classes: water, land, vegetation, snow, and ice. The first class includes inland
waterbodies (rivers and lakes) and potentially overbank flooding beyond this work’s scope.
The land class corresponds to bare soil and grasslands. The vegetation class encompasses
different vegetation types. The snow and ice classes exhibit similar spectral signatures in
the VIIRS I-bands when compared to the other classes. In this study, snow is identified
over land pixels only, and ice is only detected over lakes and rivers. It is possible for ice to
be covered with snow. In such a case, the system will classify the pixel as ice. The training
and validation of both nets follow the same process. The same hyper parameters are used.
Each scene used for the training of each net is divided into training, test, and validation
fractions that cover 80%, 10%, and 10% of the scene, respectively.

Segmentation tasks commonly employ encoder–decoder architectures [20–23] due to
their widespread usage. In this framework, input images undergo a process of encoding
at various stages, followed by upsampling by the decoder to restore the original size. The
fundamental idea behind this architecture originated from the Fully Convolutional Network
(FCN) [22]. FCN replaces the fully connected layers of the network with convolutional
layers and employs deconvolutional layers to perform upsampling, thereby restoring
the segmentation results. Building upon the FCN paradigm, U-Net introduces a more
sophisticated decoder that incorporates compensatory elements at corresponding levels to
account for local information [20].

The U-Net architecture, a type of Convolutional Neural Network (CNN) approach,
was initially proposed to enhance segmentation performance on biomedical images [20].
This architecture proved particularly effective for applications that require output images of
similar size to the input images. To achieve this, the U-Net architecture employs a two-step
process of down sampling (encoder) using convolutional layers, followed by upsampling
(decoder) to restore the image while performing segmentation [20].

The encoder path captures the contextual information of the image, generating feature
maps. It constitutes the initial component, typically employing a pre-trained classification
network such as VGG or ResNet. The encoder’s purpose is to encode the input image into
feature representations at various levels by employing convolution blocks, followed by
downsampling via maxpooling operations [20]. However, the decoder path uses transposed
convolutions to enable precise localization. The decoder constitutes the latter part of the
architecture, serving the purpose of semantically projecting the discriminative features
learned by the encoder at a lower resolution onto the pixel space at a higher resolution.
This process aims to achieve dense classification. The decoder is composed of up sampling
and concatenation operations, which are subsequently followed by regular convolution
operations. Consequently, the U-Net architecture produces an output of the same size as
the input image with a specified class depth. Leveraging the U-Net architecture, each pixel
in the input image can be estimated individually, making it highly suitable for tasks such
as building extraction [20].
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In addition to the determination of ice extent as an output of the applied segmenta-
tion, the system calculates ice concentration for each pixel within the scene that falls in a
waterbody (river or lake). The ice concentration is calculated using a linear model that uses
two tie points of the I02 channel, one for open water reflectance and another for pure ice
pixel reflectance. Given the significant variability of reflectance spatially and seasonally, the
tie points used in the calculation of ice concentration are updated regularly as new scenes
are being processed using the 10% and 80% quantiles of the reflectance values for the water
and ice tie points, respectively.

2.4. Evaluation Metrics

In the present study, a quantitative verification of the U-Net deep learning model
was executed via a raster-to-raster comparison. This approach involved a juxtaposition of
the river status data derived from the model output and the rasterized river status data
extracted from the ice charts published by the authorities in New Brunswick, Canada. The
evaluation metrics for the comparison were encapsulated in a 2 × 2 confusion matrix,
representing the status of a pixel as either ice or water ice.

The components of the confusion matrix comprised True Positives (TP), False Positives
(FP), False Negatives (FN), and True Negatives (TN). Here, TP represented the accurate
predictions of river ice presence, and a high TP count signified commendable predictive
accuracy for positive instances. Conversely, FP denoted erroneous predictions of river ice
presence, with a high FP count highlighting a tendency to incorrectly identify river ice
presence. Similarly, FN stood for incorrect predictions of river ice absence, with a high
FN count indicating missed instances of river ice presence. Lastly, TN pertained to correct
predictions of river ice absence, with a high count of TNs underscoring predictive accuracy
for negative cases. To measure the model’s overall accuracy, the Proportion Correct (PC)
was utilized. PC is the ratio of correct predictions (TP and TN) to the total number of
instances, calculated as follows:

PC =
TP + TN

TP + FP + FN + TN
, (1)

The Bias ratio (B), defined in Equation (2), was employed to ascertain the model’s bias.
The metric indicates whether the predicted occurrences (in this case, river ice conditions:
(TP + FP) are overpredicted or underpredicted compared to the observed occurrences (total
actual occurrences: TP + FN). A bias ratio of 1 implies perfect prediction, whereas a value
greater than 1 indicates over-prediction, and a value less than 1 signaled under-prediction.

B =
TP + FP
TP + FN

, (2)

The model’s efficacy in correctly detecting positive instances (here, the river ice condi-
tion) was assessed via the Probability of Detection (POD). As shown in Equation (3), POD
represents the fraction of the actual occurrences that were correctly predicted. A POD value
close to 1 suggests high detection capabilities, while a value close to 0 indicates poor detec-
tion. Concurrently, the False Alarm Ratio (FAR), or the ratio of false positive instances to
the total predicted positive cases, was used to quantify the number of incorrectly predicted
positive cases (Equation (4)).

POD =
TP

TP + FN
, (3)

FAR =
FP

TP + FP
, (4)
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Finally, the Critical Success Index (CSI) was employed as a comprehensive accuracy
metric that considered TP, FP, and FN. The CSI ranged from 0 to 1, with 1 being the ideal
score, computed as follows:

CSI =
TP

TP + FP + FN
, (5)

These measures collectively offer an extensive understanding of the model’s perfor-
mance, particularly useful in binary classification tasks such as this study’s prediction of
the presence or absence of river ice. They provided insights into the model’s accuracy
in predicting river ice presence (POD), its bias towards over- or under-prediction (Bias
ratio), its general accuracy (PC), the frequency of incorrect predictions (FAR), and an
all-encompassing measure of the model’s performance (CSI).

3. Results
3.1. Remote Sensing-Based Validation of the VIIRS River Ice Product

Figure 3 shows an example of the three different products that the river ice system
generates, namely ice extent in Figure 3b, ice concentration in Figure 3d, and a map that
integrates all classes in Figure 3e. In this example, VIIRS observation over the Lake Saint-
Pierre area in the Saint Lawrence River, downstream of Montreal, Canada, on 14 January
2022 is shown. The generated maps in this example are compared to a scene from Sentinel
3 captured on the same day over the same region. Ice extent in Figure 3b agrees reasonably
well with the extent shown in the Sentinel 3 image, as the VIIRS product clearly captures
ice presence along the southern and northern banks of the Saint Lawrence River and
Lake Saint Pierre. The central part of the river and lake’s cross section is maintained ice
free in part due to ice breaking activities that are regularly conducted by the Canadian
Coast Guard to maintain the Saint Lawrence seaway ice-free and prevent ice jams and
flooding in its tributaries, especially close to spring breakup season [24]. This section of the
Saint Lawrence River tends to freeze between January and March, with varying onset and
breakup dates depending on the year. For instance, in 2023, Saint Lawrence had one of the
lowest ice extents on record [25].

The calculated ice concentration in Figure 3d agrees well with the ice extent in the
VIIRS product and the RGB Sentinel 3 image. Ice concentration values are the highest
along the northern and southern riverbanks and in Saint Pierre Lake. The concentration
of ice gradually decreases towards the river’s seaway in the center of the cross-section
where ice concentration values are around zero, which matches the appearance of ice-free
and water pixels in the sentinel 3 RGB image and VIIRS ice extent product in Figure 3b.
Ice concentration values were also high in the Saint Lawrence tributaries on the southern
side of the river, indicating prevailing freezing conditions in these shallow and narrow
rivers, which corroborated by the freezing conditions reported in the ice extent map and
Sentinel 3 RGB image. It is worth noting that ice extent and ice concentration are calculated
independently in the system. While ice concentration values are determined using adaptive
tie points adjusted depending on the scene, ice extent is solely a result of the U-Net
segmentation. The agreement between ice concentration distribution and ice extent is
therefore an indication of their reliability. Figure 3e displays all the determined classes,
including ice extent that is reported in Figure 3b. Even if the verification of snow extent is
beyond the scope of this study, one can notice that the spatial distribution of snow on the
surface is in agreement with the one seen in Sentinel 3 RGB. The extent of snow north of
the Saint Lawrence River well matches its distribution in the VIIRS product. Despite the
focus on mapping river ice in this study, the extent of snow cover and its change, especially
during the melt period is highly informative and indicative of river sections where the
breakup is more likely.
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Figure 3. A comparative depiction of the phenology of river ice in the Saint Lawrence River from onset
to break, as captured by the proposed system [13] and observed with Sentinel 3. (a) Geographical
location of the study area. (b) The system-generated river ice and water layer. (c) Corresponding
Sentinel 3 observation. (d) System-derived ice concentration layer. (e) Comprehensive layer showing
all classes.

The assessment of the river ice product was conducted continuously for three winter
seasons via regular communications with end-users from NOAA River Forecast Centers
(RFCs) under the National Weather Service (NWS). The assessment was qualitative and
relied on collected observations from ground-based cameras mostly operated by USGS,
field observations from government authorities and/or citizen science programs, and
flyovers such as the RiverWatch flight surveys that were conducted in Alaska during the
breakup period. Overall, the assessment of the product according to the received feedback
shows its capabilities to accurately map river ice extent and concentration, especially in
large and moderately wide rivers. Figure 4 shows one example of the assessment of the
product using ground-based observation of the Missouri River using a camera that is
part of a USGS station [26]. Two observations are presented in Figure 4, one on 6 April
2023 (Figure 4c) and another on 9 April 2023 (Figure 4f). The camera frames showed a
significant change in ice conditions as the second photograph taken on the 9th of April
showed ice-free conditions, indicating a rapid transition from an ice-covered river cross
section to an ice-free one. The corresponding river ice map displaying ice concentration
values at the same location showed a similar behavior as the concentration dropped from
around 90% (Figure 4b) to values closer to 20% (Figure 4e). The persistent ice concentration
value (i.e., 20%) that is determined by the system despite the fact that the camera frame
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shows open water conditions could be attributed to the existence of snow on the ground as
it is shown around the bottom edge of the photographs (Figure 4f) and all classes layer of
the segmented image (Figure 4d). Overall, ice concentration values in the Missouri River
showed a swift drop that is in line with the local observation obtained from the USGS
camera. The rapid transition and change in river ice conditions are common in mid-latitude
regions in the US. The quick dynamic of river ice, as illustrated in this example highlights
the importance of developing an automated system for the monitoring of quick changes,
potential ice jam formation, and the occurrence of ice-induced flooding.
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Figure 4. Comparative verification of system output with USGS ground-based cameras on specific
dates along sections of the Missouri River near Bismarck, USA. (a) Map depicting all classes on
6 April 2023 [13]. (b) Map showcasing the ice concentration layer on 6 April 2023 [13]. (c) River
condition captured by USGS ground-based cameras on 6 April 2023 [25]. Subfigures (d–f) present
analogous data for 9 April 2023, respectively mirroring the content of subfigures (a–c) [13,25].

3.2. Quantitative Evaluation and Performance Insights of the VIIRS River Ice Product

The quantitative assessment of the VIIRS river ice product was conducted using river
ice charts reported by the New Brunswick Department of Environment and the local
Government. Figure 5 displays an example of the charts issued by the authorities in New
Brunswick reporting ice conditions as of 31 March 2023. To our knowledge, the generated
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river ice charts are the only available river ice-focused maps georeferenced that show the
spatial distribution of ice in rivers along with its concentration and thickness. The VIIRS
river ice product determines ice extent and concentration in all waterbodies, which include
rivers and lakes. The river ice charts issued by the authorities in New Brunswick comprise
rivers only and do not include lakes. A quantitative assessment was conducted where both
products overlap.
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Figure 5. Ice chart from the New Brunswick Department of Environment and local Government
portal (a) to verify VIIRS ice extent in (b), RGB Sentinel 3 RGB in (c), and VIIRS river ice concentration
in (d) as of 31 March 2023. (b–d) are obtained from Stevens River Ice Mapping System [13].

Reference data for model evaluation were obtained on specific dates in 2023: 7 Febru-
ary, 9 February, 3 March, 10 March, 21 March, 11 April, 14 April, and 15 April. During these
periods, in situ observations were available, and the generated VIIRS river ice images had
no or limited cloud cover. The selected dates corresponded to observed river statuses of
open water and ice cover on the Saint John River and the Aroostook River. Such conditions
allowed for a rigorous assessment of the model’s performance in accurately distinguishing
between ice cover and open water.

The Proportion Correct, indicating the model’s overall accuracy, was 0.747. This signi-
fies that approximately 75% of the model’s predictions regarding the presence or absence of
river ice were accurate, demonstrating a solid level of predictive accuracy. However, it also
implies that there is room for further refinement to improve the model’s performance. The
Bias ratio stood at 0.870. Being less than 1, this indicates a slight tendency for the model to
under-predict the presence of river ice. This suggests that improvements could be made in
the model’s sensitivity towards identifying instances of river ice (Figure 6).

The Probability of Detection was measured at 0.768, indicating that the model ac-
curately detected around 77% of the actual positive cases. This demonstrates a strong
capability in identifying the presence of river ice, which is a promising result. However,
the False Alarm Ratio was calculated as 0.117, suggesting that about 12% of the model’s
predicted positive cases were incorrect. This is a relatively low proportion, indicating that
the model has a low tendency to falsely predict the presence of river ice where there is
none. Lastly, the Critical Success Index was calculated as 0.697. This value, close to the
ideal score of 1, suggests that the model has a good overall performance considering both
over-predictions and missed predictions. However, as with the PC, this also indicates
potential for further refinement of the model (Figure 6).
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Overall, these metrics provide a comprehensive understanding of the model’s perfor-
mance, highlighting its strengths in accurately detecting river ice presence and areas that
could be refined to further enhance its predictive accuracy. To this end, a more granular
analysis was carried out to decode the model’s bias by examining the rate of false positives
and false negatives in relation to open water status. Specifically, the periods when the
river was in open water status but was incorrectly predicted by the model as ice-covered
(FPW: False Positive Water), and vice versa when the river was ice-covered yet the model
predicted open water status (FNW: False Negative Water).

The investigation revealed that the FPW rate was a remarkable 0%. This outcome
suggests that the model exhibited exceptional accuracy in detecting open-water conditions.
However, a stark contrast was observed in the rate of FNW, which stood at 25%. This result
translates to instances where the model incorrectly predicted the river’s status as open
water while it was, in fact, ice-covered (Figure 6).

This discrepancy partially elucidates why the model is underestimating the river
ice cover, as indicated by the Bias ratio of less than 1. It is also worth noting that the
model predicted snow cover over some river stretches, which introduced an additional
source of bias. Nonetheless, the primary focus of our analysis remained anchored to
the binary open water and ice-covered states that the river typically assumed during the
observation periods.

The obtained findings underline the necessity for refining the model’s sensitivity
towards ice cover detection whilst acknowledging its commendable performance in map-
ping open water conditions. The results highlight the nuanced performance of the model
and offer valuable insights into potential areas of improvement, thereby guiding further
model refinement.

3.3. Systematic Tracking of Snowmelt and Ice Dynamics Using Automated Surface Mapping

Figure 7 shows the progress of snowmelt across Alaska as a representative example
that demonstrates the system’s capability to track the change in surface conditions, espe-
cially during season transitions. The statewide scenes shown in Figure 7 are the result of
mosaicking of all received VIIRS scenes on a specific day. Given the northern location of
the state, several VIIRS swaths can be collected in one day due to the numerous overpasses
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of the sensor. The mosaic is built by maintaining the most recent cloud-free observations,
which led to the minimization of cloud presence. On 19 April 2022, VIIRS product shows
the state of Alaska entirely covered by snow, indicating that the breakup season has not
started yet. Usually, river ice breakup is preceded by snowmelt, which generates the runoff
that increases streamflow, which triggers a mechanical river ice breakup. The following
statewide scene of 1 May 2022 shows that the start of the snowmelt occurred in the cen-
tral region of Alaska around the confluence of the Tanana and Yukon Rivers as well as
the downstream region of the Kuskokwim River. Then, snowmelt and breakup rapidly
propagated to the entire central region of the state and the south-central region where
most of the state population lives. It is only towards the end of May that snow and ice
in the north slope region of Alaska (north of the Yukon River) started to melt, according
to the generated scene of 25 May 2022. The breakup in the north slope region continued
for another three weeks, ending in the second week of June 2022, according to the scene
generated on 12 June 2022, which shows a snow- and ice-free region in the north of Alaska.
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Figure 7. Changes in weekly running composite of VIIRS scenes over Alaska that capture statewide
progress in snow melt and river ice breakup. The dates of each scene follow the MM-DD format for
the year 2022 [13].

The interplay between snowmelt and river ice breakup forms a pivotal aspect of the
hydrological exploration in this study, and this is particularly evident when observing the
Tanana River watershed during the 2021 breakup season. As demonstrated in Figure 8,
which outlines the temporal shifts in freshwater coverage within the watershed, there is
a clear correlation between the progression of snowmelt and subsequent changes in ice
coverage. This relationship, although intricate, underscores the complex role that snowmelt
plays in governing the dynamics of river ice processes.

Snowmelt flooding, a prevalent hydrological phenomenon in cold regions, often
coincides with the onset of ice breakup, suggesting a complex mutual interaction. As the
spring season ushers in warmer temperatures, snowmelt accelerates, thereby increasing the
volume of water feeding into river systems. This surge in water levels applies additional
pressure on the overlying ice, which in turn induces stress and triggers cracks parallel
to the riverbanks. It is worth noting, however, that a time delay inherently exists in the
response of ice coverage to the triggers of snowmelt, introducing a nuanced interplay
between snowmelt and ice breakup dynamics.
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Figure 8. Temporal shifts in freshwater coverage over the Tanana River watershed, Alaska–2021
breakup season. The time series illustrates changes in snow, ice, and water areas. Cloud-free
observations from VIIRS during the rapid snow melt event are encapsulated within the dashed box.
The time series were retrieved from the Stevens River Ice Mapping System [13].

The observations obtained during the 2021 breakup season on the Tanana River
(Figure 8) provided a compelling case study for this interaction. Over a brief span of five
days, from 17 April to 21 April, we observed a ~41% reduction in snow-covered areas,
instigated by a rapid snowmelt. Notably, this substantial reduction in snow coverage was
followed by only a ~16% decrease in ice-covered areas within the following four days,
solidifying the theory of a lagged response of ice breakup to snowmelt. This four-day delay,
although seemingly minor, has profound implications for our understanding of river ice
phenomena and their potential impacts on water resources management.

The obtained findings reinforce the concept that snowmelt acts as a precursor to river
ice mechanical breakup, with a temporal offset between these two processes playing a
crucial role in hydrological forecasting. Accurate prediction of these events can inform
proactive strategies, minimizing risks associated with flooding and potential infrastructure
damage. These results contribute to the expanding understanding of these interlinked
processes, offering a foundation for further research aimed at refining and improving
predictive models. As we continue to grapple with the implications of changing climate
conditions, such insights into river ice dynamics will prove indispensable for sustainable
and efficient water resource management. It is worth noting that the reported lag highlights
the lag between snowmelt and ice breakup specific to the watershed. Several factors related
to the watershed properties such as topography and morphology, and snow cover such as
its depth and density, control the phase lag between snowmelt and the start of breakup.
This aspect can be investigated further in future work, leveraging the daily mapping of
snow and ice with the system.

The proposed system’s capacity for automated and consistent mapping of ice and snow
presents addresses a current operational gap in the field of hydrology. By facilitating the
near real-time monitoring and spatial representation of different surface classes, the system
helps users in the monitoring and understanding of evolving environmental conditions.
Significantly, this continuous and automated approach enables the deduction of trends and
changes in surface areas, including the distribution of ice and snow cover. This information
is invaluable in predicting crucial phenomena, such as the timing and extent of ice breakup
events, with greater accuracy and foresight than was previously possible. By identifying
shifts in surface conditions and linking these with pertinent hydrological data, the system
allows the user to anticipate events with a degree of certainty that has broad implications
for water management and hazard prediction.
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The proposed automated system transcends the limits of traditional, intermittent
observational methods, providing a dynamic and richly informative tool for understanding
and predicting the complexities of ice and snow dynamics. Consequently, it fosters a
more robust, nuanced, and proactive approach to the study and management of our water
resources and climatic conditions. The current system is automated, and all generated
maps are hosted and disseminated via a Google Earth Engine-based interface hosted
by the iSMART laboratory at the Stevens Institute of Technology [13]. Eventually, a full
integration of the system in the decision-making process of NOAA NWS forecasters requires
the transition of the system and its integration into the Advanced Weather Interactive
Processing System (AWIPS), which is a platform used to gather several datasets from
various sources for NWS experts to analyze and generate their forecast reports. The
generated river ice product was disseminated using a Google Earth engine interface and
made publicly available online [13]. The system is operational between October 1st and
June 15th of the following year, a period that is assumed to cover all freeze-up and breakup
events within the continental geographic domain of the product. In addition to VIIRS
maps, the user can access other satellite images that are readily accessible via the Google
Earth engine catalog. Hence, the user can overlap the generated river ice product with
RGB images from different satellites such as Sentinel 2 and 3 that were acquired on the
same day. This is particularly important for cross validation and product verification
using independent verifications. It is worth noting that this study focuses solely on the
segmentation of VIIRS images and that future work will address the classification of scenes
from other sensors such as SLSTR on 3. Nevertheless, the display of the RGB images
along with the VIIRS product has proven to be useful beyond the validation purposes.
Figure 9, for instance, compares the VIIRS river ice product, precisely the ice concentration
values, over the Hudson River north of New York City on 26 February 2022 to a coincident
Sentinel 2 RGB scene over the same area and same day. Both cloud-free scenes were visually
inspected, and ice floes were manually delineated. One should note that the overpass times
of VIIRS NOAA-20 used here to calculate ice concentration and Sentinel 2 are 2:20 p.m. and
10:30 a.m., respectively. The comparison of both scenes shown in Figure 9 shows a shift of
the delineated ice floes over an estimated distance of about 3 km. Knowing that both scenes
were acquired around 4 h apart, this implies that the surface velocity was about 0.2 m/s.
This value of ice motion velocity that was inferred in this example from the analysis of
two satellite scenes is close to other values reported in the literature such as those in the
study by Kääb et al. (2019) that reported an ice motion velocity of 0.8 m/s in the Yukon
River [26]. Even if ice motion velocity is site-specific and depends on several other factors,
obtaining values of similar magnitude in two large rivers of the US is indicative of the
potential of using multi-satellite observations. Furthermore, the comparison of the inferred
velocity to the simulated one using the operational hydrodynamic model of the Stevens
Flood Advisory System (SFAS) [27] indicates that the simulated surface velocity around
the ice displacement was about 1 knot, which is equivalent to approximately 0.51 m/s that
is in the order of the inferred values from space. The SFAS system accounts for the effect
of river ice and its attenuation of the tidal effect in the Hudson. Nonetheless, the system
lacks the assimilation of the actual ice information to accurately calculate the effect on the
circulation of the river. This can be addressed in future studies. This example demonstrates
the possible inference of river ice motion and its velocity using multi-satellite observations.
The future development of a multi-satellite product can lead to the automated calculation
of ice motions, which is critical for the prediction of ice jam formations.
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Figure 9. Example of ice motion in the Hudson River inferred from multi-satellite observations using
the VIIRS ice concentration product and a collocated Sentinel 3 scene on 26 February 2022.

4. Discussion

The qualitative and quantitative assessments of the developed river ice mapping
system demonstrated its reliability in capturing river ice dynamics across a large continental
scale. Thus, as such, the developed system is a candidate for operational deployment, so it
could be used and hosted by NOAA NWS and used by forecasters at the River Forecast
Centers and National Water Centers. Nonetheless, the conducted assessment of the product
by NOAA end-users during the past winters has revealed that there is a need for further
improvements that could be addressed in future work.

The current version of the river ice mapping system relies solely on VIIRS images,
which are of moderate 375 m spatial resolution. This suggests that in its current version,
the system is more suitable for large rivers and those of a moderately wide cross section,
wider than 375 m. Future work will cover narrow rivers, which requires downscaling
the collected observations over mixed pixels that includes both land and ice or water
reflectance. The challenge is to unmix the coarse pixel observation, which could be the
result of different combinations of surface conditions that may lead to the same overall
pixel-level observations. For instance, a high reflectance from a smaller land fraction
due to snow presence mixed with an ice-free river fraction within the pixel can lead to
similar satellite observations in the case of a larger land snow-free land fraction mixed
with ice-covered river fraction within the same pixel. An accurate estimate of land and
water fractions within the observed pixels and the conditions of each of these fractions is
necessary for the downscaling of the moderate-resolution product to cover narrow rivers.

Overall, the system has shown an acceptable performance in detecting clouds of
different types over the entire geographic range. It was noted that the system is capable of
detecting cirrocumulus clouds that are commonly known as ‘’popcorn clouds” reasonably
well despite their local extent. The limitation faced in the case of low and thin clouds is
common when optical images are used. The proposed approach for cloud detection that
relies on the vertical difference between I05 temperature and the LST climatology (DLST)
works well with high altitude and thick clouds but requires further training in the case of
low and thin clouds. In addition, a lower performance was noticed in the detection of cloud
shadow, which was merged with cloud class in the automated system. This limitation can
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be attributed to the relatively limited geographic extent of cloud shadow compared to other
classes, which implies a lower number of cloud shadow pixels used in the training of the
U-Net compared to the other geographically prevailing classes. Future work will focus on
enhancing cloud shadow detection, which can be achieved by collecting more scenes and
enlarging the training data sample that corresponds to the cloud shadow class. Another
approach that can be tested may consist of introducing new explanatory variables such
as cloud base height and temperature profile, which are at the basis of geometry-based
methods of cloud shadow detection.

Some noticed challenges were region specific. The false classification of relief shade
issue was reported mostly in Alaska, where the sun angle can be relatively low and therefore
maximizes the extent of relief shade, especially in central and northern regions of the state
where mountains obstruct sunlight to create darker spots even in the presence of snow on
the ground, which leads to their classification as water since their reflectance drops to the
order of water pixels. One attempt to avoid this type of false alarm is to allow water to be
detected only within a waterbody’s boundary and within a certain buffer area around it,
which corresponds to the floodplain.

Despite the overall acceptable performance of the system. Some of the reported limita-
tions are inherent to the physics of the optical satellite data used for the detection of river
ice. The system makes use of the spectral difference between the different classes, especially
ice and water in the different optical bands. However, under specific circumstances, ice and
water may behave similarly. Figure 10 illustrates a challenging situation in Peoria Lake and
Upper Peoria Lake in the Illinois River on 10 January 2022, where NOAA NWS reported
the presence of river rice conditions that were not clearly visible in the high-resolution
Sentinel-2 in Figure 10a since NWS reported the presence of thin ice. However, the sys-
tem showed an increase in ice concentration around the section of the river, Figure 10b,
indicating a better sensitivity of the concentration to ice presence, especially in the case
of thin ice. The ice extent map did not include the thin ice part on the western riverbank
and only showed the brighter and thicker ice on the easter riverbank (Figure 10c). This
demonstrates the importance of analyzing both ice concentration and extent to develop a
better understanding of ice conditions in rivers.

Future work will include the processing of more recent sensors such as NOAA-21
and future similar sensors such as those from the European Sentinel constellation and
future Joint Polar Satellite System (JPSS) missions. The use of moderate-resolution images
from multiple sensors will generate seamless gap-free mosaics that could be equivalent in
terms of coverage to the geostationary satellites, with a noticeable improvement in terms
of spatial resolution. In addition, the use of multiple images, especially at high latitude
regions where the revisit cycles are frequent, offers the advantage of mitigating cloud
coverage [28]. This is in addition to other potential byproducts such as the inference of ice
motion, as was demonstrated in this study.

The proposed river ice system is automated and capable of generating daily maps
that inform end-users of ice conditions. The compositing of multiple images daily and
weekly and the use of multiple acquisitions can mitigate the effect of cloud obstruction.
The information derived from the system regarding ice extent and ice concentration is
certainly very useful in predicting ice transport in rivers and the possible occurrence of
ice jams. This is of primary importance for large-scale models such as the National Water
Model operated by NOAA National Water Center, an operational hydrologic and hydraulic
model that predicts streamflow across the entire continental US. Delving further into the
broader implications of this study, it is pertinent to consider the significant effect that ice
conditions have on water supply during the colder seasons. Considering a recent study, it is
apparent that the current version of the NWM necessitates improvements in its streamflow
estimation, specifically during periods of low temperatures and river ice conditions [29].
The developed river ice system can provide the needed information on ice extent and
concentration. This information can be complemented by an estimate of ice thickness that
can be retrieved from the cumulative degree day of freezing that is commonly used as a
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proxy for ice thickness. When combining ice extent and concentration with ice thickness,
one can estimate ice volume, which is essential to simulate ice transport and its impact
on the hydraulics in the river. The National Water Model, in its model agnostic NextGen
configuration, could allow the introduction of such components in northern watersheds to
account for the effect of river ice on streamflow prediction.
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5. Conclusions

This study was primarily aimed at addressing the gap in systematic, large-scale river
ice monitoring via the development of an automated, high-resolution mapping system to
provide real-time, reliable data for water resources management. The novelty of the research
lies in the application of deep learning techniques to VIIRS data, reinforced by extensive
validation against ground-based and remote sensing observations, thereby culminating
in the creation of the first continental-scale river ice monitoring system. This innovative
approach has the potential to significantly enhance our understanding of river ice dynamics
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and their implications for water resources, thereby providing crucial insights for improved
risk management and mitigation strategies. The maps generated by the system have proven
to successfully capture the phenology of river ice, particularly during the onset and breakup
periods. The consistent reflection of changes in ice, water, and snow conditions, as inferred
from the VIIRS product, corroborates its reliability, underlining its usefulness in monitoring
hydraulic and hydrological processes across northern watersheds in the US.

The evaluation of the river ice product was carried out continuously over three winter
seasons, involving regular interaction with end-users from NOAA River Forecast Centers
under the National Weather Service. Ground-based observations from USGS-operated
cameras, field observations, citizen science programs, and aerial surveys such as the
RiverWatch flight surveys in Alaska formed the basis of the assessment. This constant
monitoring and feedback from users demonstrated the system’s capability to accurately
map river ice extent and concentration, particularly in large and moderately wide rivers.
Analysis of data from the Missouri River, for example, indicated a swift transition from an
ice-covered river to an ice-free one, as evidenced by ground-based camera observations.
The corresponding river ice map showed a similar trend, validating the system’s ability
to accurately track rapid changes in river ice conditions. Such rapid shifts are common in
mid-latitude regions of the US and underline the necessity for an automated monitoring
system that can quickly respond to potential ice jam formation and ice-induced flooding.

A quantitative assessment of the model revealed an overall accuracy (Proportion
Correct) of 0.747, indicating that approximately 75% of the model’s predictions regarding
the presence or absence of river ice were accurate. This not only demonstrates an admirable
level of predictive accuracy but also suggests room for further model refinement. With
a Bias ratio of 0.870, the model exhibited a slight under-prediction of river ice presence,
hinting at a potential area for improving the model’s sensitivity. The study also established
a relationship between changes in the extent of snow, ice, and water within specific water-
sheds. For instance, in the Tanana River watershed, Alaska, a rapid snow melt typically
occurs around 4 days before the mechanical breakup in the river, as detected by an increase
in water extent and a decline in ice surface area in the VIIRS river ice product.

In conclusion, this study represents a significant stride towards the establishment of
an automated, reliable system for large-scale river ice monitoring. The accuracy of the
developed model, its validation via rigorous qualitative and quantitative assessments, and
its ability to track swift changes in river ice conditions together underscore its potential as
a valuable tool for future water resources management. Further refinement and enhance-
ments building upon the insights garnered from this study can contribute to improved risk
management and water resource sustainability under changing climate conditions.
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